Angiosan
SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT
Angiosan 3 mg/ml oral solution
2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Each ml solution contains 3 mg of valsartan.
Excipients:
Each ml solution contains 0.3 g sucrose, 1.22 mg methyl parahydroxybenzoate (E218) and 5 mg poloxamer (188)
For the full list of excipients, see section 6.1.
3. PHARMACEUTICAL form
Clear, colourless to pale yellow solution.
4. Clinical particulars
4.1 Therapeutic indications
Treatment of hypertension in children and adolescents 6 to 18 years of age.
Posology and method of administration
Posology
Children and adolescents 6 to 18 years of age
For children and adolescents who are unable to swallow tablets, the use of the Angiosan oral solution is recommended. The systemic exposure and peak plasma concentration of valsartan is about 1.7-fold and 2.2-fold higher with the solution compared to the tablets.
The initial dose for the Angiosan oral solution is 20 mg (corresponding to 7 ml of the solution) once daily for children and adolescents below 35 kg of weight and 40 mg (corresponding to 13 ml of the solution) once daily for those weighing 35 kg or more. The dose should be adjusted based on blood pressure response up to a maximum dose of 40 mg valsartan once daily (corresponding to 13 ml of the solution) for children and adolescents with body weight below 35 kg and 80 mg valsartan (corresponding to 27 ml of the solution) for children and adolescents with body weight of 35 kg or more.
Switching between Angiosan tablets and Angiosan Oral Solution
It is not recommended to switch between Angiosan tablets and Angiosan oral solution unless clinically required.
If switching from Angiosan tablets to Angiosan oral solution is considered essential on clinical grounds, the valsartan dose should be adjusted as described in the table below and blood pressure should be carefully monitored. The dose should be titrated based on blood pressure response and tolerability.
Tablets |
Solution |
|
Valsartan dose |
Valsartan dose to provide when switching |
Volume to take |
40 mg |
20 mg |
7 ml |
80 mg |
40 mg |
13 ml |
160 mg |
80 mg |
27 ml |
320 mg |
Due to the high volume of solution that would be necessary, the use of the solution is not recommended |
Not applicable |
If switching from Angiosan oral solution to Angiosan tablets is considered clinically essential, initially the same dose in milligrams should be given. Subsequently, frequent blood pressure monitoring should be performed taking into account potential under-dosing and dose should be titrated further based on blood pressure response and tolerability.
Children less than 6 years of age
Available data are described in sections 4.8, 5.1 and 5.2. However safety and efficacy of Angiosan in children aged 1 to 6 years have not been established.
Use in paediatric patients aged 6 to 18 years with renal impairment
Use in paediatric patients with a creatinine clearance <30 ml/min and paediatric patients undergoing dialysis has not been studied, therefore valsartan is not recommended in these patients. No dose adjustment is required for paediatric patients with a creatinine clearance >30 ml/min. Renal function and serum potassium should be closely monitored (see sections 4.4 and 5.2).
Use in paediatric patients aged 6 to 18 years with hepatic impairment
As in adults, Angiosan is contraindicated in paediatric patients with severe hepatic impairment, biliary cirrhosis and in patients with cholestasis (see sections 4.3, 4.4 and 5.2). There is limited clinical experience with Angiosan in paediatric patients with mild to moderate hepatic impairment. The dose of valsartan should not exceed 80 mg in these patients.
Paediatric heart failure and recent myocardial infarction
Angiosan is not recommended for the treatment of heart failure or recent myocardial infarction in children and adolescents below the age of 18 years due to the lack of data on safety and efficacy.
Method of administration
Angiosan may be taken independently of a meal.
4.3 Contraindications
-
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
-
Severe hepatic impairment, biliary cirrhosis and cholestasis.
-
Second and third trimester of pregnancy (see sections 4.4 and 4.6).
-
Concomitant use of Angiosan with aliskiren-containing products in patients with diabetes mellitus or renal impairment (GFR < 60 mL/min/1.73m2) (see sections 4.5 and 5.1).
4.4 Special warnings and precautions for use
Hyperkalaemia
Concomitant use with potassium supplements, potassium-sparing diuretics, salt substitutes containing potassium, or other agents that may increase potassium levels (heparin, etc.) is not recommended. Monitoring of potassium should be undertaken as appropriate.
Impaired renal function
There is currently no experience on the safe use in patients with a creatinine clearance <10 ml/min and patients undergoing dialysis, therefore valsartan should be used with caution in these patients. No dose adjustment is required for adult patients with creatinine clearance >10 ml/min (see sections 4.2 and 5.2).
Hepatic impairment
In patients with mild to moderate hepatic impairment without cholestasis, Angiosan should be used with caution (see sections 4.2 and 5.2).
Sodium- and/or volume-depleted patients
In severely sodium-depleted and/or volume-depleted patients, such as those receiving high doses of diuretics, symptomatic hypotension may occur in rare cases after initiation of therapy with Angiosan. Sodium and/or volume depletion should be corrected before starting treatment with Angiosan, for example by reducing the diuretic dose.
Renal artery stenosis
In patients with bilateral renal artery stenosis or stenosis to a solitary kidney, the safe use of Angiosanhas not been established.
Short-term administration of Angiosan to twelve patients with renovascular hypertension secondary to unilateral renal artery stenosis did not induce any significant changes in renal haemodynamics, serum creatinine, or blood urea nitrogen (BUN). However, other agents that affect the renin-angiotensin system may increase blood urea and serum creatinine in patients with unilateral renal artery stenosis, therefore monitoring of renal function is recommended when patients are treated with valsartan.
Kidney transplantation
There is currently no experience on the safe use of Angiosan in patients who have recently undergone kidney transplantation.
Primary hyperaldosteronism
Patients with primary hyperaldosteronism should not be treated with Angiosan as their renin-angiotensin system is not activated.
Aortic and mitral valve stenosis, obstructive hypertrophic cardiomyopathy
As with all other vasodilators, special caution is indicated in patients suffering from aortic or mitral stenosis, or hypertrophic obstructive cardiomyopathy (HOCM).
Diabetes
Angiosan oral solution contains 0,3 g sucrose per mililiter. This should be taken into account in patients with diabetes mellitus.
Hereditary fructose intolerance, glucose-galactose malabsorption or sucrase-isomaltase insufficiency
Patients with rare hereditary problems of fructose intolerance, glucose-galactose malabsorption or sucrase-isomaltase insufficiency should not take Angiosan oral solution as it contains sucrose.
Methyl parahydroxybenzoate
Angiosan oral solution contains methyl parahydroxybenzoate which may cause allergic reactions (possibly delayed).
Angiosan oral solution contains poloxamer (188) which may cause softened stools.
Pregnancy
Angiotensin II Receptor Antagonists (AIIRAs) should not be initiated during pregnancy. Unless continued AIIRAs therapy is considered essential, patients planning pregnancy should be changed to alternative anti-hypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with AIIRAs should be stopped immediately, and, if appropriate, alternative therapy should be started (see sections 4.3 and 4.6).
History of angioedema
Angioedema, including swelling of the larynx and glottis, causing airway obstruction and/or swelling of the face, lips, pharynx, and/or tongue has been reported in patients treated with valsartan; some of these patients previously experienced angioedema with other drugs including ACE inhibitors. Angiosan should be immediately discontinued in patients who develop angioedema, and Angiosan should not be re-administered (see section 4.8).
Other conditions with stimulation of the renin-angiotensin system
In patients whose renal function may depend on the activity of the renin-angiotensin system (e.g patients with severe congestive heart failure), treatment with angiotensin converting enzyme inhibitors has been associated with oliguria and/or progressive azotaemia and in rare cases with acute renal failure and/or death. As valsartan is an angiotensin II antagonist, it cannot be excluded that the use of Angiosan may be associated with impairment of the renal function.
Dual Blockade of the Renin-Angiotensin-Aldosterone System (RAAS)
There is evidence that the concomitant use of ACE inhibitors, angiotensin II receptor blockers or aliskiren increases the risk of hypotension, hyperkalaemia, and decreased renal function (including acute renal failure). Dual blockade of RAAS through the combined use of ACE inhibitors, angiotensin II receptor blockers or aliskiren is therefore not recommended (see sections 4.5 and 5.1).
If dual blockade therapy is considered absolutely necessary, this should only occur under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure.
ACE inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.
Paediatric population
Change of pharmaceutical form
Angiosan oral solution is not bioequivalent to the tablet formulation and patients should not be switched unless clinically essential. For dosing recommendations in this case, see section 4.2.
Impaired renal function
Use in paediatric patients with a creatinine clearance <30 ml/min and paediatric patients undergoing dialysis has not been studied, therefore valsartan is not recommended in these patients. No dose adjustment is required for paediatric patients with a creatinine clearance >30 ml/min (see sections 4.2 and 5.2). Renal function and serum potassium should be closely monitored during treatment with valsartan. This applies particularly when valsartan is given in the presence of other conditions (fever, dehydration) likely to impair renal function.
Impaired hepatic function
As in adults, Angiosan is contraindicated in paediatric patients with severe hepatic impairment, biliary cirrhosis and in patients with cholestasis (see sections 4.3 and 5.2). There is limited clinical experience with Angiosan in paediatric patients with mild to moderate hepatic impairment. The dose of valsartan should not exceed 80 mg in these patients.
4.5 Interaction with other medicinal products and other forms of interaction
Dual blockade of the Renin-Angiotensin-Aldosterone System (RAAS) with ARBs, ACEIs, or aliskiren
Clinical trial data has shown that dual blockade of the renin-angiotensin-aldosterone-system (RAAS) through the combined use of ACE inhibitors, angiotensin II receptor blockers or aliskiren is associated with a higher frequency of adverse events such as hypotension, hyperkalaemia and decreased renal function (including acute renal failure) compared to the use of a single RAAS-acting agent (see sections 4.3, 4.4 and 5.1).
Concomitant use not recommended
Lithium
Reversible increases in serum lithium concentrations and toxicity have been reported during concomitant administration of lithium with angiotensin converting enzyme inhibitors or angiotensin II receptor antagonists, including with Angiosan... If the combination proves necessary, careful monitoring of serum lithium levels is recommended. If a diuretic is also used, the risk of lithium toxicity may presumably be increased further.
Potassium-sparing diuretics, potassium supplements, salt substitutes containing potassium and other substances that may increase potassium levels
If a medicinal product that affects potassium levels is considered necessary in combination with valsartan, monitoring of potassium plasma levels is advised.
Caution required with concomitant use
Non-steroidal anti-inflammatory medicines (NSAIDs), including selective COX-2 inhibitors, acetylsalicylic acid >3 g/day), and non-selective NSAIDs
When angiotensin II antagonists are administered simultaneously with NSAIDs, attenuation of the antihypertensive effect may occur. Furthermore, concomitant use of angiotensin II antagonists and NSAIDs may lead to an increased risk of worsening of renal function and an increase in serum potassium. Therefore, monitoring of renal function at the beginning of the treatment is recommended, as well as adequate hydration of the patient.
Transporters
In vitro data indicates that valsartan is a substrate of the
hepatic uptake transporter OATP1B1/OATP1B3 and the hepatic efflux
transporter MRP2. The clinical relevance of this finding is
unknown. Co-administration of inhibitors of the uptake transporter
(eg. rifampin, ciclosporin) or efflux transporter (eg. ritonavir)
may increase the systemic exposure to valsartan. Exercise
appropriate care when initiating or ending concomitant treatment
with such drugs.
Others
In drug interaction studies with valsartan, no interactions of clinical significance have been found with valsartan or any of the following substances: cimetidine, warfarin, furosemide, digoxin, atenolol, indometacin, hydrochlorothiazide, amlodipine, glibenclamide.
Paediatric population
In hypertension in children and adolescents, where underlying renal abnormalities are common, caution is recommended with the concomitant use of valsartan and other substances that inhibit the renin angiotensin aldosterone system which may increase serum potassium. Renal function and serum potassium should be closely monitored.
4.6 Fertility, pregnancy and lactation
Pregnancy
The use of Angiotensin II Receptor Antagonists (AIIRAs) is not recommended during the first trimester of pregnancy (see section 4.4). The use of AIIRAs is contra-indicated during the second and third trimester of pregnancy (see sections 4.3 and 4.4).
Epidemiological evidence regarding the risk of teratogenicity following exposure to ACE inhibitors during the first trimester of pregnancy has not been conclusive; however, a small increase in risk cannot be excluded. Whilst there is no controlled epidemiological data on the risk with AIIRAs, similar risks may exist for this class of drugs. Unless continued AIIRA therapy is considered essential, patients planning pregnancy should be changed to alternative anti-hypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with AIIRAs should be stopped immediately, and, if appropriate, alternative therapy should be started.
AIIRAs therapy exposure during the second and third trimesters is known to induce human fetotoxicity (decreased renal function, oligohydramnios, skull ossification retardation) and neonatal toxicity (renal failure, hypotension, hyperkalemia); see also section 5.3 “Preclinical safety data”.
Should exposure to AIIRAs have occurred from the second trimester of pregnancy, ultrasound check of renal function and skull is recommended.
Infants whose mothers have taken AIIRAs should be closely observed for hypotension (see also sections 4.3 and 4.4).
Breast-feeding
Because no information is available regarding the use of valsartan during breastfeeding, Angiosan is not recommended and alternative treatments with better established safety profiles during breast-feeding are preferable, especially while nursing a newborn or preterm infant.
Fertility
Valsartan had no adverse effects on the reproductive performance of male or female rats at oral doses up to 200 mg/kg/day. This dose is 6 times the maximum recommended human dose on a mg/m2 basis (calculations assume an oral dose of 320 mg/day and a 60-kg patient).
4.7 Effects on ability to drive and use machines
No studies on the effects on the ability to drive have been performed. When driving vehicles or operating machines it should be taken into account that occasionally dizziness or weariness may occur.
Undesirable effects
In controlled clinical studies in adult patients with hypertension, the overall incidence of adverse reactions (ADRs) was comparable with placebo and is consistent with the pharmacology of valsartan. The incidence of ADRs did not appear to be related to dose or treatment duration and also showed no association with gender, age or race.
The ADRs reported from clinical studies, post-marketing experience and laboratory findings are listed below according to system organ class.
AdverseDrug Reactions
Adverse drug reactions are ranked by frequency, the most frequent first, using the following convention: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); not known (frequency cannot be estimated from the available data).
Within each frequency grouping, adverse drug reactions are ranked in order of decreasing seriousness.
For all the ADRs reported from post-marketing experience and laboratory findings, it is not possible to apply any ADR frequency and therefore they are mentioned with a "not known" frequency.
Hypertension
Blood and lymphatic system disorders |
|
Not known |
Decrease in haemoglobin, Decrease in haematocrit, Neutropenia, Thrombocytopenia |
Immune system disorders |
|
Not known |
Hypersensitivity including serum sickness |
Metabolism and nutrition disorders |
|
Not known |
Increase of serum potassium |
Ear and labyrinth disorders |
|
Uncommon |
Vertigo |
Vascular disorders |
|
Not known |
Vasculitis |
Respiratory, thoracic and mediastinal disorders |
|
Uncommon |
Cough |
Gastrointestinal disorders |
|
Uncommon |
Abdominal pain |
Hepato-biliary disorders |
|
Not known |
Elevation of liver function values including increase of serum bilirubin |
Skin and subcutaneous tissue disorders |
|
Not known |
Angioedema, Dermatitis bullous, Rash, Pruritus |
Musculoskeletal and connective tissue disorders |
|
Not known |
Myalgia |
Renal and urinary disorders |
|
Not known |
Renal failure and impairment, Elevation of serum creatinine |
General disorders and administration site conditions |
|
Uncommon |
Fatigue |
Paediatric population
Hypertension
The antihypertensive effect of valsartan has been evaluated in two randomised, double-blind clinical studies in 561 paediatric patients from 6 to 18 years of age. With the exception of isolated gastrointestinal disorders (like abdominal pain, nausea, vomiting) and dizziness, no relevant differences in terms of type, frequency and severity of adverse reactions were identified between the safety profile for paediatric patients aged 6 to 18 years and that previously reported for adult patients.
Neurocognitive and developmental assessment of paediatric patients aged 6 to 16 years of age revealed no overall clinically relevant adverse impact after treatment with Angiosan for up to one year.
In a double-blind randomized study in 90 children aged 1 to 6 years, which was followed by a one-year open-label extension, two deaths and isolated cases of marked liver transaminases elevations were observed. These cases occurred in a population who had significant comorbidities. A causal relationship to Angiosan has not been established. In a second study in which 75 children aged 1 to 6 years were randomised, no significant liver transaminase elevations or death occurred with valsartan treatment.
Hyperkalaemia was more frequently observed in children and adolescents aged 6 to 18 years with underlying chronic kidney disease.
The safety profile seen in controlled-clinical studies in adult patients with post-myocardial infarction and/or heart failure varies from the overall safety profile seen in hypertensive patients. This may relate to the patients underlying disease. ADRs that occurred in adult patients with post-myocardial infarction and/or heart failure are listed below.
Post-myocardial infarction and/or heart failure (studied in adult patients only)
Blood and lymphatic system disorders |
|
Not known |
Thrombocytopenia |
Immune system disorders |
|
Not known |
Hypersensitivity including serum sickness |
Metabolism and nutrition disorders |
|
Uncommon |
Hyperkalaemia |
Not known |
Increase of serum potassium |
Nervous system disorders |
|
Common |
Dizziness, Postural dizziness |
Uncommon |
Syncope, Headache |
Ear and labyrinth disorders |
|
Uncommon |
Vertigo |
Cardiac disorders |
|
Uncommon |
Cardiac failure |
Vascular disorders |
|
Common |
Hypotension, Orthostatic hypotension |
Not known |
Vasculitis |
Respiratory, thoracic and mediastinal disorders |
|
Uncommon |
Cough |
Gastrointestinal disorders |
|
Uncommon |
Nausea, Diarrhoea |
Hepato-biliary disorders |
|
Not known |
Elevation of liver function values |
Skin and subcutaneous tissue disorders |
|
Uncommon |
Angioedema |
Not known |
Dermatitis bullous, Rash, Pruritis |
Musculoskeletal and connective tissue disorders |
|
Not known |
Myalgia |
Renal and urinary disorders |
|
Common |
Renal failure and impairment |
Uncommon |
Acute renal failure, Elevation of serum creatinine |
Not known |
Increase in Blood Urea Nitrogen |
General disorders and administration site conditions |
|
Uncommon |
Asthenia, Fatigue |
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
4.9 Overdose
Symptoms
Overdose with Angiosan may result in marked hypotension, which could lead to depressed level of consciousness, circulatory collapse and/or shock.
Treatment
The therapeutic measures depend on the time of ingestion and the type and severity of the symptoms; stabilisation of the circulatory condition is of prime importance.
If hypotension occurs, the patient should be placed in a supine position and blood volume correction should be undertaken.
Valsartan is unlikely to be removed by haemodialysis.
5. PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Angiotensin II Antagonists, plain, ATC code: C09CA03
Valsartan is an orally active, potent, and specific angiotensin II (Ang II) receptor antagonist. It acts selectively on the AT1 receptor subtype, which is responsible for the known actions of angiotensin II. The increased plasma levels of Ang II following AT1 receptor blockade with valsartan may stimulate the unblocked AT2 receptor, which appears to counterbalance the effect of the AT1 receptor. Valsartan does not exhibit any partial agonist activity at the AT1 receptor and has much (about 20,000 fold) greater affinity for the AT1 receptor than for the AT2 receptor. Valsartan is not known to bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation.
Valsartan does not inhibit ACE (also known as kininase II) which converts Ang I to Ang II and degrades bradykinin. Since there is no effect on ACE and no potentiation of bradykinin or substance P, angiotensin II antagonists are unlikely to be associated with coughing. In clinical trials where valsartan was compared with an ACE inhibitor, the incidence of dry cough was significantly (p<0.05) less in patients treated with valsartan than in those treated with an ACE inhibitor (2.6% versus 7.9% respectively). In a clinical trial of patients with a history of dry cough during ACE inhibitor therapy, 19.5% of trial subjects receiving valsartan and 19.0% of those receiving a thiazide diuretic experienced cough compared to 68.5% of those treated with an ACE inhibitor (p<0.05).
Use in adults
Administration of Angiosan to patients with hypertension results in reduction of blood pressure without affecting pulse rate.
In most patients, after administration of a single oral dose, onset of antihypertensive activity occurs within 2 hours, and the peak reduction of blood pressure is achieved within 4‑6 hours. The antihypertensive effect persists over 24 hours after dosing. During repeated dosing, the antihypertensive effect is substantially present within 2 weeks, and maximal effects are attained within 4 weeks and persist during long-term therapy. Combined with hydrochlorothiazide, a significant additional reduction in blood pressure is achieved.
Abrupt withdrawal of Angiosan has not been associated with rebound hypertension or other adverse clinical events.
In hypertensive patients with type 2 diabetes and microalbuminuria, valsartan has been shown to reduce the urinary excretion of albumin. The MARVAL (Micro Albuminuria Reduction with Valsartan) study assessed the reduction in urinary albumin excretion (UAE) with valsartan (80‑160 mg/od) versus amlodipine (5‑10 mg/od), in 332 type 2 diabetic patients (mean age: 58 years; 265 men) with microalbuminuria (valsartan: 58 µg/min; amlodipine: 55.4 µg/min), normal or high blood pressure and with preserved renal function (blood creatinine <120 µmol/l). At 24 weeks, UAE was reduced (p<0.001) by 42% (–24.2 µg/min; 95% CI: –40.4 to –19.1) with valsartan and approximately 3% (–1.7 µg/min; 95% CI: –5.6 to 14.9) with amlodipine despite similar rates of blood pressure reduction in both groups.
The Angiosan Reduction of Proteinuria (DROP) study further examined the efficacy of valsartan in reducing UAE in 391 hypertensive patients (BP=150/88 mmHg) with type 2 diabetes, albuminuria (mean=102 µg/min; 20‑700 µg/min) and preserved renal function (mean serum creatinine = 80 µmol/l). Patients were randomized to one of 3 doses of valsartan (160, 320 and 640 mg/od) and treated for 30 weeks. The purpose of the study was to determine the optimal dose of valsartan for reducing UAE in hypertensive patients with type 2 diabetes. At 30 weeks, the percentage change in UAE was significantly reduced by 36% from baseline with valsartan 160 mg (95%CI: 22 to 47%), and by 44% with valsartan 320 mg (95%CI: 31 to 54%). It was concluded that 160‑320 mg of valsartan produced clinically relevant reductions in UAE in hypertensive patients with type 2 diabetes.
Other: dual blockade of the renin-angiotensin-aldosterone system (RAAS)
Two large randomised, controlled trials (ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial) and VA NEPHRON-D (The Veterans Affairs Nephropathy in Diabetes)) have examined the use of the combination of an ACE-inhibitor with an angiotensin II receptor blocker.
ONTARGET was a study conducted in patients with a history of cardiovascular or cerebrovascular disease, or type 2 diabetes mellitus accompanied by evidence of end-organ damage. VA NEPHRON-D was a study in patients with type 2 diabetes mellitus and diabetic nephropathy.
These studies have shown no significant beneficial effect on renal and/or cardiovascular outcomes and mortality, while an increased risk of hyperkalaemia, acute kidney injury and/or hypotension as compared to monotherapy was observed. Given their similar pharmacodynamic properties, these results are also relevant for other ACE inhibitors and angiotensin II receptor blockers.
ACE inhibitors and angiotensin II receptor blockers should therefore not be used concomitantly in patients with diabetic nephropathy.
ALTITUDE (Aliskiren Trial in Type 2 Diabetes Using Cardiovascular and Renal Disease Endpoints) was a study designed to test the benefit of adding aliskiren to a standard therapy of an ACE inhibitor or an angiotensin II receptor blocker in patients with type 2 diabetes mellitus and chronic kidney disease, cardiovascular disease, or both. The study was terminated early because of an increased risk of adverse outcomes. Cardiovascular death and stroke were both numerically more frequent in the aliskiren group than in the placebo group and adverse events and serious adverse events of interest (hyperkalaemia, hypotension and renal dysfunction) were more frequently reported in the aliskiren group than in the placebo group.
Hypertension (paediatric population)
The antihypertensive effect of valsartan have been evaluated in four randomized, double-blind clinical studies in 561 paediatric patients from 6 to 18 years of age and 165 paediatric patients 1 to 6 years of age. Renal and urinary disorders, and obesity were the most common underlying medical conditions potentially contributing to hypertension in the children enrolled in these studies.
Clinical experience in children at or above 6 years of age
In a clinical study involving 261 hypertensive paediatric patients 6 to 16 years of age, patients who weighed <35 kg received 10, 40 or 80 mg of valsartan tablets daily (low, medium and high doses), and patients who weighed ≥35 kg received 20, 80, and 160 mg of valsartan tablets daily (low, medium and high doses). At the end of 2 weeks, valsartan reduced both systolic and diastolic blood pressure in a dose-dependent manner. Overall, the three dose levels of valsartan (low, medium and high) significantly reduced systolic blood pressure by 8, 10, 12 mmHg from the baseline, respectively. Patients were re-randomized to either continue receiving the same dose of valsartan or were switched to placebo. In patients who continued to receive the medium and high doses of valsartan, systolic blood pressure at trough was -4 and -7 mm Hg lower than patients who received the placebo treatment. In patients receiving the low dose of valsartan, systolic blood pressure at trough was similar to that of patients who received the placebo treatment. Overall, the dose-dependent antihypertensive effect of valsartan was consistent across all the demographic subgroups.
In another clinical study involving 300 hypertensive paediatric patients 6 to 18 years of age, eligible patients were randomized to receive valsartan or enalapril tablets for 12 weeks. Children weighing between ≥18 kg and <35 kg received valsartan 80 mg or enalapril 10 mg; those between ≥35 kg and <80 kg received valsartan 160 mg or enalapril 20 mg; those ≥80 kg received valsartan 320 mg or enalapril 40 mg. Reductions in systolic blood pressure were comparable in patients receiving valsartan (15 mmHg) and enalapril (14 mm Hg) (non-inferiority p-value <0.0001). Consistent results were observed for diastolic blood pressure with reductions of 9.1 mmHg and 8.5 mmHg with valsartan and enalapril, respectively.
Clinical experience in children less than 6 years of age
Two clinical studies were conducted in patients aged 1 to 6 years with 90 and 75 patients, respectively. No children below the age of 1 year were enrolled in these studies. In the first study, the efficacy of valsartan was confirmed compared to placebo but a dose-response could not be demonstrated. In the second study, higher doses of valsartan were associated with greater BP reductions, but the dose response trend did not achieve statistical significance and the treatment difference compared to placebo was not significant. Because of these inconsistencies, valsartan is not recommended in this age group (see section 4.8).
The European Medicines Agency has waived the obligation to submit the results of studies with Angiosan in all subsets of the paediatric population in heart failure and heart failure after recent myocardial infarction. See section 4.2 for information on paediatric use.
5.2 Pharmacokinetic properties
Absorption:
Following oral administration of valsartan alone, peak plasma concentrations of valsartan are reached in 2–4 hours with tablets and 1–2 hours with solution formulation. Mean absolute bioavailability is 23% and 39% with tablets and solution formulation, respectively. Food decreases exposure (as measured by AUC) to valsartan by about 40% and peak plasma concentration (Cmax) by about 50%, although from about 8 h post dosing plasma valsartan concentrations are similar for the fed and fasted groups. This reduction in AUC is not, however, accompanied by a clinically significant reduction in the therapeutic effect, and valsartan can therefore be given either with or without food.
Distribution:
The steady-state volume of distribution of valsartan after intravenous administration is about 17 litres, indicating that valsartan does not distribute into tissues extensively. Valsartan is highly bound to serum proteins (94–97%), mainly serum albumin.
Biotransformation:
Valsartan is not biotransformed to a high extent as only about 20% of dose is recovered as metabolites. A hydroxy metabolite has been identified in plasma at low concentrations (less than 10% of the valsartan AUC). This metabolite is pharmacologically inactive.
Elimination:
Valsartan shows multiexponential decay kinetics (t½α <1 h and t½ß about 9 h). Valsartan is primarily eliminated by biliary excretion in faeces (about 83% of dose) and renally in urine (about 13% of dose), mainly as unchanged drug. Following intravenous administration, plasma clearance of valsartan is about 2 l/h and its renal clearance is 0.62 l/h (about 30% of total clearance). The half-life of valsartan is 6 hours.
Special populations
Impaired renal function
As expected for a compound where renal clearance accounts for only 30% of total plasma clearance, no correlation was seen between renal function and systemic exposure to valsartan. Dose adjustment is therefore not required in patients with renal impairment (creatinine clearance >10 ml/min). There is currently no experience on the safe use in patients with a creatinine clearance <10 ml/min and patients undergoing dialysis, therefore valsartan should be used with caution in these patients (see sections 4.2 and 4.4).
Valsartan is highly bound to plasma protein and is unlikely to be removed by dialysis.
Hepatic impairment
Approximately 70% of the dose absorbed is eliminated in the bile, essentially in the unchanged form. Valsartan does not undergo any noteworthy biotransformation. A doubling of exposure (AUC) was observed in patients with mild to moderate hepatic impairment compared to healthy subjects. However, no correlation was observed between plasma valsartan concentration versus degree of hepatic dysfunction. Angiosan has not been studied in patients with severe hepatic dysfunction (see sections 4.2, 4.3 and 4.4).
Paediatric population
In a study of 26 paediatric hypertensive patients (aged 1 to 16 years) given a single dose of a suspension of valsartan (mean: 0.9 to 2 mg/kg, with a maximum dose of 80 mg), the clearance (litres/h/kg) of valsartan was comparable across the age range of 1 to 16 years and similar to that of adults receiving the same formulation.
Impaired renal function
Use in paediatric patients with a creatinine clearance <30 ml/min and paediatric patients undergoing dialysis has not been studied, therefore valsartan is not recommended in these patients. No dose adjustment is required for paediatric patients with a creatinine clearance >30 ml/min. Renal function and serum potassium should be closely monitored (see sections 4.2 and 4.4).
5.3 Preclinical safety data
Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential.
In rats, maternally toxic doses (600 mg/kg/day) during the last days of gestation and lactation led to lower survival, lower weight gain and delayed development (pinna detachment and ear-canal opening) in the offspring (see section 4.6). These doses in rats (600 mg/kg/day) are approximately 18 times the maximum recommended human dose on a mg/m2basis (calculations assume an oral dose of 320 mg/day and a 60-kg patient).
In non-clinical safety studies, high doses of valsartan (200 to 600 mg/kg body weight) caused in rats a reduction of red blood cell parameters (erythrocytes, haemoglobin, haematocrit) and evidence of changes in renal haemodynamics (slightly raised plasma urea, and renal tubular hyperplasia and basophilia in males). These doses in rats (200 and 600 mg/kg/day) are approximately 6 and 18 times the maximum recommended human dose on a mg/m2basis (calculations assume an oral dose of 320 mg/day and a 60-kg patient).
In marmosets at similar doses, the changes were similar though more severe, particularly in the kidney where the changes developed to a nephropathy which included raised urea and creatinine.
Hypertrophy of the renal juxtaglomerular cells was also seen in both species. All changes were considered to be caused by the pharmacological action of valsartan which produces prolonged hypotension, particularly in marmosets. For therapeutic doses of valsartan in humans, the hypertrophy of the renal juxtaglomerular cells does not seem to have any relevance.
Paediatric population
Daily oral dosing of neonatal/juvenile rats (from a postnatal day 7 to postnatal day 70) with valsartan at doses as low as 1 mg/kg/day (about 10‑35% of the maximum recommended paediatric dose of 4 mg/kg/day on systemic exposure basis) produced persistent, irreversible kidney damage. These effects above mentioned represent an expected exaggerated pharmacological effect of angiotensin converting enzyme inhibitors and angiotensin II type 1 blockers; such effects are observed if rats are treated during the first 13 days of life. This period coincides with 36 weeks of gestation in humans, which could occasionally extend up to 44 weeks after conception in humans.The rats in the juvenile valsartan study were dosed up to day 70, and effects on renal maturation (postnatal 4‑6 weeks) cannot be excluded. Functional renal maturation is an ongoing process within the first year of life in humans. Consequently, a clinical relevance in children <1 year of age cannot be excluded, while preclinical data do not indicate a safety concern for children older than 1 year.
6. PHARMACEUTICAL PARTICULARS
6.1 List of excipients
Sucrose
Methyl parahydroxybenzoate (E218)
Potassium sorbate
Poloxamer (188)
Citric acid, anhydrous
Sodium citrate
Artificial blueberry flavour (538926 C)
Propylene glycol (E1520)
Sodium hydroxide
Hydrochloric acid
Purified water
6.2 Incompatibilities
Not applicable.
6.3 Shelf life
18 months
6.4 Special precautions for storage
Do not store above 30°C.
Once opened, the bottle can be stored for up to 3 months at temperatures below 30°C.
Nature and contents of container
180 ml amber type III glass bottle with a white child resistant polypropylene cap, including a polyethylene sealing disk and a yellow tamper evident ring, in addition the pack includes one dispensing kit containing one 5 ml oral dosing polypropylene syringe, one press in bottle adapter and one 30 ml polypropylene dosing cup.
Pack size: 1 bottle containing 160 ml oral solution
6.6 Special precautions for disposal
No special requirements.
7. MARKETING AUTHORISATION HOLDER
<[To be completed nationally]>
{Name and address}
<{tel}>
<{fax}>
8. MARKETING AUTHORISATION NUMBER(S)
<[To be completed nationally]>
9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
Date of first authorisation: 2010-05-19
Date of latest renewal: 2015-05-10
<[To be completed nationally]>
10. DATE OF REVISION OF THE TEXT
2016-01-14
26