iMeds.se

Brufen Retard

Information för alternativet: Brufen Retard 800 Mg Depottablett, visa andra alternativ
Document: Brufen Retard prolonged-release tablet ENG SmPC change

Summary of Product Characteristics

1 Name of the Medicinal Product

Brufen Retard 800 mg prolonged-release tablets.


2 Qualitative and Quantitative Composition

One tablet contains 800 mg ibuprofen.


For the full list of excipients, see section 6.1.


3 Pharmaceutical Form

Prolonged-release tablet

White, oval, about 21x10 mm, film-coated tablet.


4 Clinical Particulars

4.1 Therapeutic indications


Brufen Retard is indicated in adults and adolescents


Symptomatic treatment of pain and inflammation in rheumatoid arthritis and osteoarthritis.

4.2 Posology and method of administration


Posology


Treatment should start with the lowest dose anticipated to be effective, which can subsequently be adjusted, depending on the therapeutic response and any adverse reactions. In long-term treatment a low maintenance dose should be the aim.


The risk of adverse reactions may be minimised by using the lowest effective dose for the shortest duration necessary to control symptoms (see section 4.4).


Adults and adolescents (12 years and older):

2 tablets in the evening. May be increased to maximum 3 tablets daily, divided between morning and evening. The maximum dose in a 24-hour period is 2,400 mg.

The tablets should be swallowed whole with at least half a glass of water.


Patients who have suffered dyspepsia or gastrointestinal bleeding when taking other oral antiphlogistic drugs have tolerated ibuprofen well, but should be monitored regularly the first time they are treated with Brufen Retard.


Paediatric population

Brufen Retard is not recommended for children under the age of 12 years.


Elderly

The elderly are at increased risk of serious consequences of adverse reactions. If an NSAID is considered necessary, the lowest effective dose should be used and for the shortest possible duration. The patient should be monitored regularly for GI bleeding during NSAID therapy. If renal or hepatic function is impaired, dosage should be assessed individually.


Renal impairment

Caution should be taken with ibuprofen dosage in patients with renal impairment. The dosage should be assessed individually. The dose should be kept as low as possible and renal function should be monitored (see sections 4.3, 4.4 and 5.2).


Hepatic impairment

Caution should be taken with dosage in patients with hepatic impairment. The dosage should be assessed individually and the dose should be kept as low as possible (see sections 4.3, 4.4 and 5.2).


Method of administration

It is recommended that patients with sensitive stomachs take ibuprofen with food.

Take Brufen Retard prolonged-release tablets with a glass of water. Brufen Retard prolonged-release tablets should be swallowed whole and not chewed, broken, crushed or sucked on to avoid oral discomfort and throat irritation.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.


Active gastric or duodenal ulcer or a history of recurrent gastrointestinal ulcer/bleeding (two or more distinct episodes of proven ulceration or bleeding).


Severe hepatic failure.


Severe heart failure (NYHA Class IV).


Severe renal failure (glomerular filtration below 30 mL/min).


Conditions involving an increased tendency to bleeding.


Gastrointestinal bleeding or perforation in connection with previous treatment with NSAIDs.


The third trimester of pregnancy.


Because of cross-reactions, Brufen Retard should not be given to patients who have developed symptoms of asthma, rhinitis or urticaria after taking aspirin or other NSAIDs.

4.4 Special warnings and precautions for use

General precautions

Undesirable effects may be minimised by using the lowest effective dose for the shortest duration necessary to control symptoms (see section 4.2 and gastrointestinaland cardiovascular effects below).


As with other NSAIDs, ibuprofen may mask the signs of infection.


There is some evidence that drugs which inhibit cyclo-oxygenase/prostaglandin synthesis may cause impairment of female fertility by an effect on ovulation. This is reversible on withdrawal of treatment.


Cardiovascular effects

Appropriate monitoring and advice are required for patients with a history of hypertension and/or mild to moderate heart failure, as fluid retention and oedema have been reported in association with NSAID therapy.


Clinical studies suggest that use of ibuprofen, particularly at a high dose (2400 mg / day) may be associated with a small increased risk of arterial thrombotic events ( for example myocardial infarction or stroke). Overall, epidemiological studies do not suggest that lowdose ibuprofen (e.g. 1200 mg / day ) is associated with an increased risk ofarterial thrombotic events.


Patients with uncontrolled hypertension, congestive heart failure(NYHA II-III), established ischaemic heart disease, peripheral arterial disease and/or cerebrovascular disease should only be treated with ibuprofen after careful considerationand high doses (2400 mg/day) should be avoided. Careful consideration should also be exercised before initiating long-term treatment of patients with risk factors for cardiovascular events (e.g. hypertension, hyperlipidaemia, diabetes mellitus, smoking), particularly if high doses of ibuprofen (2400 mg/day) are required.


Caution is required when treating patients with a history of hypertension and/or heart failure, since fluid retention and oedema have been reported in connection with NSAID treatment.


Gastrointestinal bleeding, ulceration and perforation

There is a strong link between the dose and severe gastrointestinal bleeding. The concomitant administration of ibuprofen and other NSAIDs, including selective cyclooxygenase-2 (COX-2) inhibitors should be avoided.


Elderly patients are at greater risk of experiencing adverse reactions when treated with an NSAID, especially gastrointestinal bleeding and perforation, which may be fatal.


Potentially fatal gastrointestinal bleeding, ulceration and perforation have been reported in connection with treatment with all types of NSAID and have occurred at any time during treatment, with or without warning symptoms or previous episodes of serious gastrointestinal events.


The risk of gastrointestinal bleeding, ulceration or perforation is higher with increased doses of NSAIDs in patients with a history of ulcer, especially if complicated by haemorrhage or perforation (see section 4.3), and in the elderly. Patients with the above-mentioned risk factors should commence treatment on the lowest possible dose.


Treatment with mucosa-protective drugs (e.g. misoprostol or proton pump inhibitors) should be considered for these patients as well as for patients on low doses of acetylsalicylic acid or other drugs that may increase the risk of undesirable gastrointestinal effects (see below and section 4.5).


Patients with a history of gastrointestinal reactions, particularly elderly patients, should be told to watch out for any unusual abdominal symptoms (especially gastrointestinal bleeding), particularly at the start of the treatment, and, if such symptoms occur, to seek medical help.


Caution should be exercised in patients receiving concomitant medication which could increase the risk of ulceration or bleeding, such as oral corticosteroids, anticoagulants such as warfarin, selective serotonin re-uptake inhibitors or antiplatelet drugs such as aspirin (see section 4.5).


Treatment with ibuprofen should be withdrawn if the patient suffers gastrointestinal bleeding or ulceration.


NSAIDs should be given with care to patients with a history of gastrointestinal disease, e.g. ulcerative colitis and Crohn’s disease, as such conditions may be exacerbated (see section 4.8).


Renal effects

Caution should be exercised with regard to dehydrated patients. There is a risk of renal impairment in dehydrated adolescents.


As with other NSAIDs, the long-term administration of ibuprofen has resulted in papillary necrosis and other pathological changes in the kidney. Renal toxicity has also been seen in patients in whom renal prostaglandins have a compensatory role in the maintenance of normal renal perfusion. In these patients the administration of an NSAID may cause a dose-dependent reduction in prostaglandin formation and, secondarily, in renal blood flow, which may cause kidney failure. Those who are at greatest risk of this are patients with renal impairment, heart failure, liver dysfunction, the elderly and patients on diuretics or ACE inhibitors. The symptoms are normally reversible following withdrawal of the NSAID.


For patients with renal, hepatic or cardiac impairment, use the lowest effective dose for the shortest possible duration and monitor renal function, especially in long-term treated patients (see also Section 4.3).


Haematological effects

Ibuprofen can inhibit platelet aggregation, resulting in prolongation of bleeding time.


Respiratory disorders

Caution is required if ibuprofen is administered to patients suffering from, or with a previoushistory of, bronchial asthma, chronic rhinitis or allergic diseases since ibuprofen has been reported to cause bronchospasm, urticaria or angioedema in such patients.


Dermatological effects

Severe skin reactions, some with a fatal outcome, such as exfoliative dermatitis, Stevens-Johnson syndrome and toxic epidermal necrolysis, have been reported very rarely in connection with the use of NSAIDs (see section 4.8). The risk of such reactions occurring is greatest at the start of the treatment, the majority of cases occurring during the first month. Treatment with ibuprofen should be withdrawn at the first signs of skin rash, mucosal lesions or other signs of hypersensitivity.


Infections and infestations

Exceptionally, varicella may be the origin of serious skin and soft-tissue infectious complications. To date, the contributing role of NSAIDs in the worsening of these infections cannot be ruled out. Thus, it is advisable to avoid use of Brufen Retard in case of varicella.


Aseptic meningitis

Aseptic meningitis has been observed on rare occasions in patients on ibuprofen therapy. Although it is probably more likely to occur in patients with systemic lupus erythematosus and related connective tissue diseases, it has been reported in patients who do not have an underlying chronic disease.


Patients with gastrointestinal problems, SLE, haematological or coagulation disorders and asthma should be treated with care and be closely monitored during NSAID treatment, since their condition may be exacerbated by the NSAID.


Brufen Retard is not suitable for children.

4.5 Interaction with other medicinal products and other forms of interaction

The following combinations with Brufen Retard should be avoided:


The dicumarol group:NSAIDs may increase the effect of anticoagulants such as warfarin. Experimental studies show that ibuprofen reinforces the effects of warfarin on bleeding time. NSAIDs and the dicumarol group are metabolised by the same enzyme, CYP 2C9.


Anti-platelet agents:NSAIDs should not be combined with antiplatelet agents such as ticlopidine due to the additive inhibition of platelet function (see below).


Methotrexate:NSAIDs inhibit the tubular secretion of methotrexate and some metabolic interaction with reduced clearance of methotrexate may also occur as a result. Accordingly, in high-dose treatment with methotrexate one should always avoid prescribing NSAIDs (see below).


Acetylsalicylic acid:

Concomitant administration of ibuprofen and acetylsalicylic acid is not generally recommended because of the potential of increased adverse effects.


Experimental data suggest that ibuprofen may competitively inhibit the effect of lowdose acetylsalicylic acid on platelet aggregation when they are dosed concomitantly. Although there are uncertainties regarding extrapolation of these data to the clinical situation, the possibility that regular, long-term use of ibuprofen may reduce the cardioprotective effect of low-dose acetylsalicylic acid cannot be excluded. No clinically relevant effect is considered to be likely for occasional ibuprofen use (see section 5.1).


Cardiac glycosides:NSAIDs may exacerbate heart failure, reduce glomerular filtration and increase plasma cardiac glycoside (e.g. digoxin) levels.


Mifepristone:A decrease of the efficacy of the medicinal product can theoretically occur due to the antiprostaglandin properties of non-steroidal anti-inflammatory drugs (NSAIDs) including acetylsalicylic acid. Limited evidence suggests that co-administration of NSAIDs on the day of prostaglandin administration does not adversely influence the effects of mifepristone or the prostaglandin on cervical ripening or uterine contractility and does not reduce the clinical efficacy of medical termination of pregnancy.


Sulphonylureas:There are rare reports of hypoglycaemia in patients on sulphonylurea medications receiving ibuprofen.


Zidovudine:There is evidence of an increased risk of haemarthroses and haematoma in HIV(+) haemophiliacs receiving concurrent treatment with zidovudine and ibuprofen.


The following combinations with Brufen Retard may require dose adjustment:


NSAIDs may reduce the effect of diuretics and other antihypertensive agents.


NSAIDs may reduce the excretion of aminoglycosides.


Lithium:Ibuprofen reduces the renal clearance of lithium, as a result of which serum lithium levels may rise. The combination should be avoided unless frequent checks of serum lithium can be carried out and a possible reduction in the dose of lithium made.


ACE inhibitors and angiotensin-II antagonists:There is an increased risk of acute renal failure, usually reversible, in patients with renal impairment (e.g. dehydrated and/or elderly patients) when treatment with ACE inhibitors or angiotensin-II antagonists is given at the same time as NSAIDs, including selective COX-2 inhibitors. The combination should, therefore, be given with care to patients with renal impairment, especially elderly patients. Patients should be adequately hydrated and a check of renal function should be considered after the initiation of combination treatment and at regular intervals during treatment (see section 4.4).


Beta-blockers:NSAIDs reduce the antihypertensive effect of beta-adrenoceptor blocking drugs.


Selective serotonin re-uptake inhibitors (SSRIs):SSRIs and NSAIDs each entail an increased risk of bleeding, e.g. from the gastrointestinal tract. This risk is increased by combination therapy. The mechanism may possibly be linked to reduced uptake of serotonin in the platelets (see section 4.4).


Ciclosporine:The concomitant administration of NSAIDs and ciclosporin is thought to be capable of increasing the risk of nephrotoxicity due to decreased synthesis of prostacyclin in the kidney. Accordingly, in the event of combination treatment, renal function must be monitored closely.


Captopril:Experimental studies indicate that ibuprofen counteracts the effect of captopril on sodium excretion.


Colestyramine:The concomitant administration of ibuprofen and colestyramine retards and reduces (by 25%) the absorption of ibuprofen. These drugs should be taken at least 2 hours apart.


Thiazides, thiazide-related preparations and loop diuretics:NSAIDs may counteract the diuretic effect of furosemide and bumetanide, possibly through inhibition of prostaglandin synthesis. They can also reduce the antihypertensive effect of thiazides.


Tacrolimus:Concomitant administration of NSAIDs and tacrolimus is thought to be capable of increasing the risk of nephrotoxicity due to decreased synthesis of prostacyclin in the kidney. Accordingly, in the event of combination treatment, renal function should be monitored closely.


Methotrexate:The risk of a potential interaction between an NSAID and methotrexate should also be taken into account in connection with low-dose treatment with methotrexate, especially in patients with renal impairment. Whenever combination treatment is given, renal function should be monitored. Caution should be exercised if both an NSAID and methotrexate are given within 24 hours of one another, as the plasma levels of methotrexate may increase, resulting in increased toxicity (see above).


Corticosteroids:Concomitant treatment gives rise to an increased risk of gastrointestinal ulceration or bleeding.


Antiplatelet drugs:Increased risk of gastrointestinal bleeding (see above).


CYP2C9 Inhibitors:Concomitant administration of ibuprofen with CYP2C9 inhibitors may increase the exposure to ibuprofen (CYP2C9 substrate). In a study with voriconazole and fluconazole (CYP2C9 inhibitors) an increased S(+)-ibuprofen exposure by approximately 80 to 100% has been shown. Reduction of the ibuprofen dose should be considered when potent CYP2C9 inhibitors are administered concomitantly, particularly when high-dose ibuprofen is administered with either voriconazole or fluconazole.


Interaction studies have only been performed on adults

4.6 Fertility, pregnancy and lactation

Pregnancy

Inhibition of prostaglandin synthesis may adversely affect the pregnancy and/or embryo/foetal development. Data from epidemiological studies suggest an increased risk of miscarriage and of cardiac malformation and gastroschisis after the use of a prostaglandin synthesis inhibitor in early pregnancy. The absolute risk of cardiovascular malformation was increased from less than 1% up to approximately 1.5%. The risk is believed to increase with dose and duration of therapy. In animals the administration of a prostaglandin synthesis inhibitor has been shown to result in increased pre- and post-implantation losses and embryo-foetal lethality. In addition, increased incidences of various malformations, including cardiovascular, have also been reported in animals given a prostaglandin synthesis inhibitor during the organogenetic period. During the first and second trimesters of pregnancy, Brufen Retard should not be given unless clearly necessary. If Brufen Retard is used by a woman attempting to conceive or during the first and second trimester of pregnancy, the dose should be kept as low and duration of treatment as short as possible.


During the third trimester, all prostaglandin synthesis inhibitors may expose the foetus to:

- Cardiopulmonary toxicity (with premature closure of the ductus arteriosus and pulmonary hypertension),

- Renal dysfunction, which may progress to renal failure with consequent oligo-hydramnios.

The mother and the neonate, at the end of pregnancy, to:

- Prolongation of bleeding time,

- Inhibition of uterine contractions, which may resulting in delayed or prolonged labour.


Consequently, Brufen Retard is contraindicated during the last trimester of pregnancy.


Breast-feeding

Ibuprofen is excreted in breast milk, but with therapeutic doses during short term treatment the risk for influence on infant seems unlikely. If, however, longer treatment is prescribed, early weaning should be considered.


Fertility

The use of ibuprofen may impair fertility and is not recommended in women attempting to conceive. In women who have difficulties conceiving or who are undergoing investigation of infertility, withdrawal of ibuprofen should be considered.

4.7 Effects on ability to drive and use machines

Following treatment with Brufen Retard, the reaction time of some patients may be affected. This should be taken into account where increased vigilance is required, e.g. when driving a car. No studies have been performed.

4.8 Undesirable effects

The undesirable effects are mainly associated with the pharmacological effect of ibuprofen on prostaglandin synthesis. The most common effects are dyspepsia and diarrhoea, which are estimated to occur in about 10–30% of treated patients.


Adverse events at least possibly related to ibuprofen are displayed by MedDRA frequency convention and system organ class database. The following frequency groupings are used: Very common (1/10), Common (1/100 to <1/10), Uncommon (1/1000 to <1/100), Rare (1/10,000 to <1/1000), Very rare (<1/10,000) and Not known (cannot be estimated from the available data).


System organ class

Frequency

Adverse reaction


Infections and infestations

Uncommon

Rhinitis

Rare

Meningitis aseptic

Blood and lymphatic system disorders

Uncommon

Leukopenia, thrombocytopenia, agranulocytosis, aplastic anaemia and haemolytic anaemia

Immune system disorders

Rare

Anaphylactic reaction

Psychiatric disorders

Uncommon

Insomnia, anxiety

Rare

Depression, confusional state

Nervous system disorders

Common

Headache, dizziness

Uncommon

Paraesthesia, somnolence

Rare

Optic neuritis

Eye disorders

Uncommon

Visual impairment

Rare

Toxic optic neuropathy

Ear and labyrinth disorders

Uncommon

Hearing impaired

Rare

Tinnitus, vertigo

Respiratory, thoracic and mediastinal disorders

Uncommon

Asthma, bronchospasm, dyspnoea

Gastrointestinal disorders

Common

Dyspepsia, diarrhoea, nausea, vomiting, abdominal pain, flatulence, constipation, melaena, haematemesis, gastrointestinal haemorrhage

Uncommon

Gastritis, duodenal ulcer, gastric ulcer, mouth ulceration, gastrointestinal perforation

Very rare

Pancreatitis

Not Known

Colitis and Crohn’s disease

Hepatobiliary disorders

Uncommon

Hepatitis, jaundice, hepatic function abnormal

Rare

Liver injury

Very rare

Hepatic failure

Skin and subcutaneous tissue disorders

Common

Rash

Uncommon

Urticaria, pruritus, purpura, angioedema, photosensitivity reaction

Very rare

Severe forms of skin reactions (e.g. Erythema multiforme, bullous reactions including Stevens-Johnson syndrome, and toxic epidermal necroylysis)

Renal and urinary disorders


Uncommon

Nephrotoxicity in various forms, e.g. tubulointerstitial nephritis, nephrotic syndrome and renal failure

General disorders and administration site conditions

Common

Fatigue

Rare

Oedema

Cardiac disorders

Not known

Cardiac failure, myocardial infarction (also see 4.4)

Vascular disorders

Not known

Hypertension


Clinical studies suggest that use of ibuprofen, particularly at a high dose (2400 mg / day) may be associated with a small increased risk of arterial thrombotic events (for example myocardial infarction or stroke)(see section 4.4).


Gastrointestinal ulcers, perforation or bleeding may sometimes be fatal, especially in elderly persons (see section 4.4).


Ibuprofen can cause prolongation of bleeding time through reversible inhibition of platelet aggregation.


In the majority of cases where aseptic meningitis has been reported, there has been some form of underlying autoimmune disease (in particular, systemic lupus erythematosus and related connective tissue diseases).


Oedema, hypertension and heart failure as well as deterioration of ulcerative colitis and Crohn’s disease have been reported in connection with NSAID treatment.



Exceptionally, occurrence of serious skin and soft-tissue infectious complications have been reported in connection with varicella. Exacerbation of infection-related inflammations (e.g. development of necrotising fasciitis) coinciding with the use of NSAIDs has been described.


Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V


4.9 Overdose

Toxicity

Risk of symptoms at doses >80–100 mg/kg. At doses >200 mg/kg there is a risk of severe symptoms, though with considerable variations between individuals. A dose of 560 mg/kg in a child aged 15 months gave severe intoxication, 3.2 g in a 6-year-old mild to moderate intoxication, 2.8–4 g in a 1½-year-old and 6 g in a 6-year-old severe intoxication even after gastric lavage, 8 g in an adult moderate intoxication and >20 g in an adult very severe intoxication. 8 g administered to a 16-year-old affected the kidney and 12 g in combination with alcohol administered to a teenager resulted in acute tubular necrosis.


Symptoms

The predominant symptoms are from the gastrointestinal tract, e.g. nausea, abdominal pains, vomiting (possibly blood-streaked) and headache, tinnitus, confusion and nystagmus. At high doses loss of consciousness, convulsions (mainly in children). Bradycardia, fall in blood pressure. Metabolic acidosis, hypernatraemia, kidney effects, haematuria. Possibly liver effects. Hypothermia. ARDS has occasionally been reported.


Treatment

If warranted, gastric lavage, carbon. In the event of gastrointestinal problems, antacids. In the event of hypotension, intravenous fluid and, if required, inotropic support. Ensure adequate diuresis. Correction of acid-base and electrolyte disorders. Other symptomatic therapy.

5 Pharmacological Properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Anti-inflammatory and antirheumatic products, non-steroids; propionic acid derivatives

ATC code: M01AE01.


Mechanism of action

Brufen Retard belongs to the group of non-steroidal anti-inflammatory drugs (NSAIDs). It contains the propionic acid derivative p-isobutyl-hydrotropic acid with the generic name ibuprofen. Ibuprofen has anti-inflammatory, analgesic and antipyretic effects. The anti-phlogistic effect is comparable with that of aspirin and indometacin. The pharmacological effect of ibuprofen is probably associated with its ability to inhibit prostaglandin synthesis. Ibuprofen prolongs bleeding time through reversible inhibition of platelet aggregation.


Clinical efficacy and safety

Experimental data suggest that ibuprofen may competitively inhibit the effect of lowdose acetylsalicylic acid on platelet aggregation when they are dosed concomitantly.

Some pharmacodynamic studies show that when single doses of ibuprofen 400 mg were taken within 8 h before or within 30 min after immediate release acetylsalicylic acid dosing (81 mg), a decreased effect of acetylsalicylic acid on the formation of thromboxane or platelet aggregation occurred. Although there are uncertainties regarding extrapolation of these data to the clinical situation, the possibility that regular, long-term use of ibuprofen may reduce the cardioprotective effect of low-dose acetylsalicylic acid cannot be excluded. No clinically relevant effect is considered to be likely for occasional ibuprofen use (see section 4.5).


Ibuprofen inhibits renal prostaglandin synthesis. In patients with normal renal function this effect is of no particular significance. In patients with chronic renal insufficiency, decompensated heart or liver insufficiency and conditions involving changes in plasma volume, the inhibited prostaglandin synthesis can lead to acute renal insufficiency, fluid retention and heart failure (see section 4.3).

5.2 Pharmacokinetic properties

Absorption

Ibuprofen is rapidly absorbed from the gastrointestinal tract with a bioavailability of 80-90%. Peak serum concentrations occur one to two hours after administration of immediate release formulations.Brufen Retard prolonged-release tablets provide a gradual release of the active substance, with a slower release compared to immediate-release formulations and with a lower peak serum concentration which is reached about 3 hours after administration. The sustained absorption phase results in prolonged plasma levels of ibuprofen in the systemic circulation. As a result, Brufen Retard only needs to be taken once daily.


The pharmacokinetic profile of two Brufen Retard prolonged-release tablets, compared with that of 400 mg immediate-release tablets taken four times daily, showed that the prolonged-release formulation reduced the difference between the peak- and trough- concentrations of the immediate-release tablets and gave higher mean plasma levels at 5, 10, 15 and 24 hours. Compared with immediate-release tablets, the area under the plasma concentration-time curve (AUC) for prolonged-release tablets was similar.


Studies including a standard meal show that food does not markedly affect total bioavailability.


Distribution

Ibuprofen is extensively bound to plasma proteins (99%). Ibuprofen has a small volume of distribution being about 0.12-0.2 L/kg in adults.


Biotransformation

Ibuprofen is rapidly metabolized in the liver through cytochrome P450, preferentially CYP2C9, to two primary inactive metabolites, 2-hydroxyibuprofen and 3-carboxyibuprofen. Following oral ingestion of the drug, slightly less than 90% of an oral dose of ibuprofen can be accounted for in the urine as oxidative metabolites and their glucuronic conjugates. Very little ibuprofen is excreted unchanged in the urine.


Elimination

Excretion by the kidney is both rapid and complete. The elimination half-life is approximately 2 hours. The excretion of ibuprofen is virtually complete 24 hours after the last dose.


Special populations


Elderly

Given that no renal impairment exists, there are only small, clinically insignificant differences in the pharmacokinetic profile and urinary excretion between young and elderly.


Children

Brufen Retard is not recommended for children under the age of 12 years.


Renal impairment

For patients with mild renal impairment increased unbound (S)-ibuprofen, higher AUC values for (S)-ibuprofen and increased enantiomeric AUC (S/R) ratios as compared with healthy controls have been reported.


In end-stage renal disease patients receiving dialysis the mean free fraction of ibuprofen was about 3% compared with about 1% in healthy volunteers. Severe impairment of renal function may result in accumulation of ibuprofen metabolites. The significance of this effect is unknown. The metabolites can be removed by haemodialysis (see sections 4.2, 4.3 and 4.4).


Hepatic impairment

Alcoholic liver disease with mild to moderate hepatic impairment did not result in substantially altered pharmacokinetic parameters.


In cirrhotic patients with moderate hepatic impairment (Child Pugh’s score 6-10) treated with racemic ibuprofen an average 2-fold prolongation of the half-life was observed and the enantiomeric AUC ratio (S/R) was significantly lower compared to healthy controls suggesting an impairment of metabolic inversion of (R)-ibuprofen to the active (S)-enantiomer (see sections 4.2, 4.3 and 4.4).

5.3 Preclinical safety data

There are no preclinical data of relevance for the safety assessment, apart from what has already been taken into account in this summary of product characteristics.

6 Pharmaceutical Particulars

6.1 List of excipients

Tablet Core

Xanthan gum

Povidone

Stearic acid

Silica colloidal anhydrous


Tablet coating

Talc

Hypromellose

Titanium dioxide (E171)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years.

6.4 Special precautions for storage

Blister pack: Do not store above 25C. Store in the original package, in order to protect from moisture.

HDPE bottle: Do not store above 25C. Keep the bottle tightly closed, in order to protect from moisture.

6.5 Nature of contents and container

PVC/PVDC/Al blister with 30 tablets

HDPE bottle with polypropylene cap with 100 tablets


Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

No special requirements.

7 Marketing Authorisation Holder

To be completed nationally

8 Marketing Authorisation Number

To be completed nationally

9 Date of First Authorisation/Renewal of the Authorisation

To be completed nationally

10 Date of Revision of the Text

2015-10-26